Chapter 19

Diversity of Protists and Fungi
Protists

- ‘Misfit” or “Junk-drawer” Kingdom
- Very diverse:
 - Most unicellular BUT
 Some multicellular
 - Some heterotrophic BUT
 some autotrophic
 - Some reproduce sexually
 but Some reproduce asexually
What Unites Protists?

- All eukaryotes
- Do not form embryos
- No complex reproductive structures
Kingdom Protista
Reproduction in Protists

- Many reproduce asexually
- Some use asexual reproduction
 - Most of the time
- Some use sexual reproduction
 - During environmental stress
Sexual Reproduction

- **Gametes**
 - Sex cells
 - Produced by meiosis
 - Haploid
 - Half set of chromosomes
 - Fuse to form diploid zygote
Asexual Reproduction

- No gametes (sex cells)
- Cells just divide by:
 - Mitosis
 - Binary fission
- Diploid cells
- Exact copy of original cell
General Classification

- Informal grouping
- Autotrophic protists
 - Algae
- Heterotrophic protists
 - Protozoa
Protist Groups

- Amoebas & forams
 - Unicellular heterotrophs
 - Use ameboid movement
 - Ooze and flow
Amoebas

- Phylum Rhizopoda
- Extremely flexible
 - No cell wall
- Pseudopodia
 - “False” “Feet”
 - Cytoplasmic extensions
 - Used in locomotion
 - Used in feeding
 - Engulfs microorganisms
Amoeba Structure

- Live in:
 - aquatic environments
 - Moist soil
- Contractile vacuole
 - “Sub-pump”
 - Pumps out excess water
 - Water moves in by osmosis
Amoeba Feeding

- Some parasitic
 - *Entamoeba histolytica*
 - Causes amebic dysentery

- Most free-living
 - Feed on microorganisms
 - Engulf food
 - Form food vacuoles
 - Digest prey with lysosomes
 - Food vacuole moves throughout cytoplasm
Forams

- **Phylum Foraminifera**
 - Marine protists
 - Live in the sand or on rocks
 - Porous shells = **tests**
 - Spiral shaped
 - Resemble tiny snail
 - Made of calcium carbonate
 \(\text{(CaCO}_3\text{)} \)
Forams

- Have pores in tests
 - Cytoplasmic extensions go through pores
 - Used for feeding and locomotion
Forams

- Dead forams
 - Tests accumulate on ocean floor
 - Forms limestone
 - Important components of landforms
Algae

- All photosynthetic
- Unicellular or multicellular
- Classified by pigments and cell or body type
 - 1) Green
 - 2) Red
 - 3) Brown
1) Green Algae

- Phylum Chlorophyta
- Most in freshwater
- Most unicellular
- Contain chlorophyll
- Most have sexual and asexual stages
Green Algae

- Some marine
- Some multicellular
- Part of marine plankton
2) Red Algae

- **Phylum**
 - Rhodophyta
 - “Red” “Plant”
 - Most multicellular
 - Red pigments
 - Absorb light in deep water
 - Most marine
 - Warm ocean waters
3) Brown Algae

- Phylum Phaeophyta
 - Multicellular
 - Mostly marine
 - Larger brown algae are called *kelp*
 - Among the largest organisms on Earth
Diatoms

- **Phylum Bacillariophyta**
 - Photosynthetic
 - Unicellular
 - Double glass shells
 - Made of silica
 - Pill box shape
 - Unique markings/designs
Diatoms

- Float in water
- Move by gliding
 - Secrete chemicals
- Body shape (symmetry)
 - Radial
 - Bilateral
Diatoms

- Autotrophs
- Key producers!
- Part of plankton
 - Beginning of aquatic food chains

Archaea, Bacteria, Protists 12 min
Diatoms

- Empty shells
 - Accumulate over time
 - Mined

- Diatomaceous earth
 - Abrasive
 - Gives sparkle to paint
 - Natural control of:
 - Slugs
 - Fleas
Diatom Reproduction

- Asexual
 - 1) Shells separate
 - 2) Halves regenerate
 - 3) Eventually get smaller and have to slip out of shell
 - Grow to full size
 - Regenerate new shell
Colonial Algae

- Made of many cells
- Ex: Volvox
 - Hollow ball or sphere
 - Made of biflagellated cells
 - Colony glides and rolls through the water
Flagellates

- Flagella
 - Long hair-like structure
 - Moves back and forth
 - Locomotion
Flagellates

- Three major phyla
 - Dinoflagellates
 - Euglenoids
 - Kinetoplasts
Dinoflagellates

- Phylum Dinoflagellata
 - Unicellular
 - Most have two flagella
 - Beat in two grooves
 - One is belt-like
 - Other is perpendicular
 - Spin like a top
Dinoflagellates

- Protective coat
 - Cellulose
 - Silica
- Unusual shapes
- Part of plankton
- Most are marine
Dinoflagellates

- Reproduce asexually
- Feeding
 - Autotrophic
 - Heterotrophic
 - Both
Dinoflagellates

- Some produce powerful toxins:
- “Red Tides”
 - Occur in coastal areas
 - Population explosions
 - Deadly to organisms that feed on them
Euglenoids

- Phylum Euglenophyta
 - Freshwater protists
 - Two flagella
Euglenoids

- **Reproduction**
 - Mitosis
 - Asexual

- **Feeding**
 - Some autotrophic
 - Some heterotrophic
Euglena Structure

- **Flagella**
- **Eyespot = stigma**
 - Light sensitive organ
 - Move toward light
- **Pellicle**
 - Stiff protein inside cell membrane
 - Flexible; allows shape changes
Euglena Structure
Euglenophyta

- YouTube - Euglenoids from a ditch
Kinetoplasts

- Sometimes included with Euglenoids
- Phylum Kinetoplastida
 - Unicellular
 - Heterotrophs
 - Flagella
Kinetoplasts

- **Reproduction**
 - Most asexual
 - Some sexual

- **Ex:**
 - *Trichonympha* – in termite gut
 - Help digest wood
 - [YouTube - HOW TERMITES DIGEST WOOD](https://www.youtube.com)
 - [YouTube - Protozoa in termite gut with AxioCam HS](https://www.youtube.com)
 - *Trypanosomes* – cause sleeping sickness
Ciliates

- YouTube - Protists | Biology (an overview 4 min)
- Phylum Ciliophora
- Cilia
 - Multiple
 - Short
 - Hair-like
 - Used for locomotion
Ciliates

- Complex
- Unicellular
- Heterotrophs
Ciliates

- Many ciliates have two types of nuclei
 - Macronucleus
 - “Macro” = big
 - Small pieces of DNA
 - Micronucleus
 - “Micro” = small
 - Normal chromosomes
 - Mitosis
Ciliates

- Body “wall”
 - Called *pellicle*
 - Tough
 - Flexible

- Can move around obstacles
Asexual Reproduction

- Reproduction usually by mitosis
 - Body splits in half
 - Binary fission
 - Clones result
 - 700 generations max
 - Will die if sexual reproduction does not occur
Sexual Reproduction

- Most ciliates
- Conjugation
 - Two cells unite and exchange genetic material
 - Shuffles genes
 - Adds variation
 - Advantageous
Ciliates

- Conjugation
 - Type of sexual reproduction
 - Exchanging genetic material
Paramecium

- Many different species
- **Ex: Paramecium caudatum**
 - Unicellular
 - Heterotrophic
 - Ciliated
 - Lives in freshwater
 - Feeds on microorganisms
Paramecium Structure
Paramecium Structure
Stentor
Blepharisma
Protistan Molds

- Heterotrophs
- Some mobility
- Similar appearance and reproductive structures to Fungi
 - Different cell wall material
Protistan Molds

- 3 phyla
 - Phylum Acrasiomycota
 - Cellular slime molds
 - Phylum Myxomycota
 - Plasmodial slime molds
 - Phylum Oomycota
 - Water molds
 - White rusts
 - Downy mildews
Cellular Slime Molds

- Phylum Acrasiomycota
 - Look like amoebas
 - Haploid blobs
 - Ingest bacteria
 - Move through soil
 - Ingest decaying material
Cellular Slime Molds

– During environmental stress
 • Come together
 • Form multicellular colonies
 – Colony = slug
 • Developes a stalk
 • Produces spores
 • Spores survive harsh conditions
 • Spores become new amoebas
Plasmodial Slime Molds

- Phylum Myxomycota
- Plasmodium
 - Mass of cytoplasm
- Looks like oozing slime
- Engulf bacteria and other organic materials
Plasmodial Slime Molds

- Cells with many nuclei
- No cell walls
- Under stress
 - Divides into small mounds
 - Stalk and capsules form
 - Forms spores
Plasmodial Slime Molds

- Spores resistant to harsh conditions
- Germinate
- Haploid cells are released
 - Flagellated
 - Amoeboid motion
- Fuse to form diploid zygotes
Other Molds

- Phylum Oomycota
- Oomycetes
 - Spores have 2 flagella
 - Water molds
 - Scavengers
 - Grow on dead organisms in water
Other Molds

- Phylum Oomycota
 - Oomycetes
 - Parasites
 - White rusts
 - Downy mildews
 - Plant parasites
 - Plant pathogens
 - Irish potato famine
 - 400,000 people starved to death
Sporozoans

- Phylum Apicomplexa
- Characteristics
 - Nonmotile
 - Unicellular
 - Parasites
 - Complex life cycles
 - Form spores
Sporozoans

- All parasitic
- Cause many serious diseases
 - Malaria
 - Cryptosporidiosis
Beneficial Protists

- Symbiosis (Close relationship)
 - Ex: Commensalism
 - Live in digestive tract
 - Help digest food in cattle
Protists and Humans

- Greatest impact on humans
 - Cause disease
 - Humans
 - Livestock
 - Crops
Malaria

- One of the most deadly diseases
- 2010:
 - ~ 210,000,000 people had
 - ~ 660,000 die each year
 - Mostly children
 - Mostly tropical
 - In Africa, a child dies every 45 seconds from malaria
Malaria

- Means “bad or evil air”
- Originally thought that this disease was caused by foul air
- Particularly by vapors given off by swamps
- It was also called “swamp fever”
- It is one of the most ancient infections known to man
Malaria

- **Symptoms**
 - Severe chills
 - Fever
 - Sweating
 - Confusion
 - Can be fatal
 - Anemia
 - Kidney failure
 - Brain damage
Malaria Protist

- *Plasmodium sp.*
 - Sporozoan
 - Parasite
 - Complex life cycle

- Spread by mosquitoes
 - *Anopheles* sp.
 - Females spread
Plasmodium Life Cycle

- Three stages
 - Sporozoite
 - Merozoite
 - Gametes
Stage 1:
- Infected mosquito bites human
- Injects saliva
 - To prevent clotting so it can eat
 - Also injects about 1000 protists
- Sporozoites
 - Infective stage
 - Infects liver
 - Divide rapidly
Plasmodium Life Cycle

- Stage 2:
 - Merozoites
 - Leave the liver and infect RBCs
 - Divide rapidly
 - ~ 48 hours RBCs rupture
 - Release toxins
Plamodium Life Cycle

- Stage 2 cont’d
 - Released toxins
 cause fever and chills
- Cycle repeats
every 48-72 hours
Plamodium Life Cycle

- Stage 3:
 - Merozoites develop into gametes
 - Gametes ingested by a mosquito
 - Gametes fuse to form a zygote
 - Then form sporozoites
 - Migrate to salivary glands of mosquito
 - Must mature before it can be infective
 - Bites human, cycle repeats
Treating Malaria

- **Quinine**
 - Antimalarial
 - From bark of cinchona tree

- **Derivatives**
 - Chloroquine
 - Primaquine
Preventing Malaria

- Reduce bites
 - Mosquito netting
- Reduce mosquito populations
 - Spray insecticides
 - Reduce breeding grounds
 - Mosquito fish
Largest organism on Earth = fungus growing in Oregon
 ~ 3.5 miles across and extends an average of three feet into ground
 ~ covers an area over 1,500 football fields
 ~ 2400 years old!
- *Armillaria ostoyae*
 - “honey mushroom”
Fungi Environments

- In soil, water, air
- In or on plants and animals
- 70,000 named species
Plants vs. Fungi

Plants
- Chlorophyll
- Photosynthesize
- True roots, leaves, and stems
- Cell wall of cellulose

Fungi
- No chlorophyll
- Absorb food from environment
- No roots, leaves, stems
- Cell wall of chitin
Fungi Anatomy

- All multicellular *EXCEPT* yeasts
- **Hyphae** – long strands
 - may be chains of cells or one long cell
 - Not in yeasts
Fungi Anatomy

- **Mycelium** (mycelia = plural) – long tangled masses of hyphae
 - Underground network
- **Fruiting body** – reproductive structure
Absorbing Nutrients

- Ex: tree bark, cheese, bread, you!
- Hyphae extend into food
 - Release enzymes
 - Break down nutrients so it can go thru cell wall
 - Allows very rapid growth!
4 Main Fungi Groups

- 1) Phylum Chytridiomycota – primitive
- 2) Phylum Asomycota – sac
- 3) Phylum Zygomycota – bread molds
- 4) Phylum Basidiomycota - club
1) Primitive Fungi

- “Chytrids”
- Smallest
- Simplist
- Mostly aquatic
- Only fungi with flagellated spores
- Decomposers or parasitic
- Ex: killing amphibians
2) Sac Fungi

- All form a sac (ascus) for reproduction

- Ex:
 - Yeasts
 - *Penicillium*
 - Deep green, fuzzy
 - Grows on fruit
 - Morels and truffles
 - Tastey!
2) Sac Fungi

- *Aspergillus flavus*
 - Mold that makes aflatoxin
 - Poisonous
 - Contaminates cereals, nuts, milk
 - May cause liver cancer and eventually death
3) Bread Molds

- Often on spoiled foods
- Mycorrhizae (my kuh RY zuh)
 - Help plants fix nitrogen
4) Club Fungi

- Mushrooms, puffballs, bracket (shelf) fungi
- Rusts and smuts – cause plant disease
Reproduction

- Asexual
 - Budding
 - Fission (mitosis)

- Sexual
 - Thru meiosis
 - Produce spores
 - Everywhere
 - Can cause allergies
19.6 Fungi Ecology

- Decompose dead and decaying matter
 - Important to ecosystems
- Return nutrients to soil
 - Ex: C, N, and minerals
- Can damage trees and wooden houses
Fungi as Pathogens

- **Obligate** – always cause disease
- **Opportunistic** – only cause disease when homeostasis is disrupted
Fungi and Humans

- *Candida* – yeast that occupies skin and mouth normally
 - Can cause disease if immune system is damaged

- Others cause:
 - Ringworm
 - Athletes foot
 - Lung infections
 - Death
Fungi and Plant Diseases

- **Dutch Elm Disease**
 - Transmitted by beetle
 - carry spores from one tree to next
- **Peach scab**
- **Gray mold**
 - Strawberries
Treatments

- Fungicides
- Genetically engineered crops
- Antifungal medications
- Difficult to treat without hurting our own cells because both are eukaryotic
Mutualism

- Symbiotic relationship in which both organisms benefit
- Ex: Lichen – fungus and algae or photosynthetic bacteria
 - Algae provide food
 - Fungus provide habitat
Lichens

- Grow on solid surface
- Like cool, dry environments
- Withstand severe temps
Lichens

- Sensitive to air pollution
 - Air quality indicators
- Recycle nutrients
 - Decomposer and producer
- Used in dyes
- Antibiotic properties
Mycorrhizae

- Mutualistic relationship bw plant roots and soil fungi
 - 80% of plants in world have
 - Plant gets larger root surface area
 - Fungus gets sugars
- Boost growth
- Reduce need for fertilizer
- Produce chemicals with antibiotic properties
Leafcutters

- Use and grow fungi
- Build nest of leaves
 - Add fungi
 - Fungi break down leaves, ants eat fungi
- Farmer ants video 9 min
Important Uses

- Eat em’!
- Make bread rise
- Citric acid in soft drinks
- Antibiotics