Cardiovascular System: The Heart and Blood Vessels

Chapters 12 & 13
Cardiovascular System

• = The Heart and Blood vessels
• Vital to life
• Major function = transportation
 – Blood = vehicle
 – Vessels = path
 – Heart = pump
Cardiovascular System

• Brings oxygen and nutrients to all body cells and removes wastes
• Without proper circulation, irreversible damage occurs
 = death
The Heart

- Pumps ~8,000 liters of blood each day
 - (~40, 55 gallon drums)
- Contracts about 2.5 billion times in average lifetime
 - ~ 100,000 x a day
The Heart

• In thoracic cavity
• Between 2nd rib and 5th intercostal space
• Hollow
• Muscular
• Average size:
 \~12.5 \text{ cm long, 9 cm wide}
 – About the size of a fist
Heart Location
Heart Location
Heart Location
Heart

- Apex points to left hip
- Weighs < 1 lb
- Rests on diaphragm
- Surrounded by lungs
- Enclosed by mediastinum
Heart Coverings

- **Pericardium** - Encloses heart
 - Fibrous
 - Double layered sac:
 - 1) *Visceral pericardium* (Epicardium)
 - Thin, innermost layer
 - Covers outer surface
 - 2) *Parietal pericardium*
 - Loose, Fibrous
 - Anchors and protects
 - Lines inner surface of pericardial sac
Pericardial Cavity

• Space between parietal and visceral layers of pericardium
• Contains pericardial fluid (serous fluid)
 – Reduces friction
Heart Wall - figure 12.4

- 3 layers:
 - 1) **Epicardium** = visceral pericardium
 - Outer; serous membrane
 - Protects; reduces friction
 - Often contains adipose tissue
 - 2) **Myocardium**
 - Middle
 - Mostly cardiac muscle tissue
 - 3) **Endocardium**
 - Inner
 - Simple squamous epithelium
Heart Chambers

• Four chambers
 • Atria (2)
 – Upper chambers
 – Thin walled
 – Receiving chambers
 • Ventricles (2)
 – Lower chambers
 – Thick walled
 – Pumping chambers
Heart Chambers

• **Double pump**

• **Right side**
 – Oxygen poor blood
 – Pumps to lungs
 – Pulmonary circuit

• **Left side**
 – Oxygen rich blood
 – Pumps to body;
 – Systemic circuit

• **Interventricular septum**
 – Separates left and right sides
 – Prevents mixing of blood
Atrioventricular Valves

• **A-V valves**
 – Between atria and ventricles
 – Prevent backflow into atria
 – Consist of flaps
 • **Tricuspid valve**
 – Three flaps
 – Right side
 • **Bicuspid valve (mitral)**
 – Two flaps
 – Left side
Chordae Tendineae

• “Heart strings”
 – Strong, fibrous strings
 – Attached to **papillary muscles** = keep cusps from swinging back into atria when ventricles contract
Semilunar Valves

• **S-L valves**
 – Between ventricles and exit vessels
 – Prevent backflow into ventricles
• Three cusps
• $\frac{1}{2}$ moon-shaped
S-L Valves

• 1) Pulmonary valve
 – At entrance to pulmonary trunk

• 2) Aortic valve
 – At entrance to aortic arch
Heart Valves

• **Cardio and Resp systems 12 min**
Heart Valves
Heart Sounds

• Hear valves operate at a different times
 – “lubb”
 • AV close when the ventricles contract
 • SL valves open
 – “dupp”
 • SL close when the ventricles relax
Heart Murmur

• Backflow of blood
 – Small amount of blood regurgitates into atrium
 – Creates soft sound

• Usually prevented by valves
Heart Dissection

• Identify structures:
 – Valves
 – Chambers
 – Vessels
Coronary Circulation

• Blood supply to the heart muscle

• **Coronary arteries**
 – Originate at base of aorta in aortic sinuses
 – High pressure
Coronary Circulation

• **Cardiac veins**
 – Drain blood from heart muscle into coronary sinus
 – Posterior side of heart
 – Opens in R atrium near base of inferior vena cava
Infarct

- Interruption of blood flow causes tissue to die
- **Myocardial infarction**
 - “Coronary”
 - Heart attack
Heart Attack

• Coronary blood supply blocked
 – Lack of oxygen
 – Cells die

• Usually result from severe coronary artery disease
 – Fat build-up in walls of coronary arteries
Heart Muscle

• **Cardiac muscle tissue:**
 – Involuntary
 – Striated
 – Branching cells
 – Intercalated disks
 – Single nucleus
Cardiac Muscle

• **Heart cells**
 – Unlike skeletal muscle
 – Contract spontaneously
 • regular and continuous
 – Can be independent
 – Atrial cells
 – 60 per minute
 • Ventricular cells
 – 20-40 per minute
 – Need to be coordinated
Regulation of Heart Activity

• Nodal system
 – Intrinsic conduction system
 – Special tissue found nowhere else
 – Like a cross bw muscle and nervous tissue
 – Keeps heart beats coordinated
Conduction System

• **Sinoatrial (SA) node**
 – In right atrium
 – Tiny cell mass
 – Starts each heart beat
 – “Pacemaker”; rhythmic
 – Cells reach threshold on own
Conduction System

• **Atrioventricular (AV) node**
 – Located at junction of R. atria and R. ventricle
 – Delays signal slightly
 • all four chambers don’t contract at same time
 • Allows complete atrial contraction
Electrocardiography

• ECG or EKG
 – Recording of electrical changes generated during cardiac cycle
 – detected on body surface
Electrocardiography

• Three recognizable waves
 – 1) P wave
 • First wave
 • Small
 • Atrial depolarization
 – Before atria contract
Electrocardiography

2) QRS complex

- Second wave
- Ventricular depolarization
 - Before ventricles contract
Electrocardiography

3) T wave

- Last wave
- Small
- Ventricular repolarization
Cardiac Cycle

• Period between start of one heartbeat and start of next
 – **Systole** – period of contraction
 • Blood is pumped
 • 1st phase
 – **Diastole** – period of relaxation
 • Chamber fills with blood
 • 2nd phase
Cardiac Arrhythmias

- Abnormal cardiac activity
- ~5% experience a few abnormal heartbeats daily = “normal”
- When heart’s pumping efficiency reduced = problem
 - Causes:
 - Damage to myocardium
 - Drug use
 - Electrolyte imbalance
Arrhythmias

- **Bradycardia** – heart rate slower than normal
 - < 60 bpm
- **Tachycardia** – heart rate faster than normal
 - > 100 bpm
Cardiac Output (CO)

- Amount of blood pumped by Left ventricle in 1 minute
- Regulated so peripheral tissues receive adequate blood supply under all conditions
 - Can increase by 300-500%
- Calculation:
 \[\text{CO} = \text{HR} \times \text{SV} \]

 - \(\text{HR} = \) heart rate in beats per minute
 - \(\text{SV} = \) stroke volume in mL per beat
 - amount of blood ejected by heart in single beat
 - varies from beat to beat
Figuring CO

- HR = 75 b/m
- SV = 80 mL/beat
- What is the CO?
 - = 75 beats/min x 80 mL/beat
 - = 6000 mL/min = 6 L/min
 - = ave. for adult
Frank – Starling Principle

• Relation bw fiber length and force of contraction
• Myocardium stretched further (longer fibers) = greater force
• “more in = more out”
Heart Rate Influenced by:

• Change in:
 – blood pressure
 – body temp
 – Ion concentration (K and Ca)
Ch. 13 Blood Vessels

• Closed system
• Three types:
 – Arteries
 – Capillaries
 – Veins
Circulation Loops

- Heart
- Arteries
 - Arterioles
- Capillaries
- Venules
- Veins
- Heart
Vessels by the Numbers

• 10 billion capillaries

• If all capillaries placed end to end:
 – Circle globe
 – 25,000 miles long

• All vessels combined
 – Estimated >60,000 miles!
Arteries

• Carry blood *away* from the heart
• Blood under pressure
• Closer to pumping action of the heart
• Thick walled
 – Strong and stretchy
• Feel pulse here
Veins

• Carry blood \textbf{to} the heart
• Blood pressure is low
• Far from pumping action of heart
• Thin walled
• Have \textbf{valves}
 – No pulse here
Valves

• Folds of endothelium
• Prevent backflow
 – Blood must overcome force of gravity
Distended Veins

- Walls weaken
 - Valves don’t work well
 • Blood pools
- Uncomfortable!
- **Varicose veins**
 - Occurs in thighs and legs
- **Hemorrhoids**
 - Occurs in lining of anal canal
Walls of Arteries and Veins

• 3 layers:
 – 1) **Tunica intima** (interna)
 • Endothelium, connective tissue w elastic fibers
 • Inner layer
 • Smooth surface
 – Helps prevent blood clotting
 – 2) **Tunica media**
 • Middle layer
 • Smooth muscle
 • Collagen and elastic fibers
 • Controls diameter of vessel
Walls of Arteries and Veins

• 3) **Tunica externa** (adventitia)
 – Sheath of connective tissue
 – Irregularly organized collagenous fibers
 – Anchors vessel
Capillaries

• Tiny!
 ~ diameter of RBC
• Connect arterioles and venules
• *Only* vessels that allow exchange bw blood and surrounding material
 – Thin walls
 • One cell thick!
• Gases exchanged
• **Capillary bed**
 – Interweaving network of capillaries
Precapillary Sphincter

• Band of smooth muscle
 – At entrance to each capillary

• Regulate opening and closing of capillaries
 – Route blood flow to different body parts
Vessel diameter

• **Vasoconstriction** - decrease in diameter of arteries
 – Smooth muscle contracts

• **Vasodilation** – increase in diameter of vessel
 – Smooth muscle relaxes
Review: Two Loop Circulation

• **Pulmonary circulation**
 – From heart to lungs and back

• **Systemic circulation**
 – From heart to body and back
 – Longer
 • L. ventricle has thicker walls
Blood Pressure

• Force blood exerts against inner walls of blood vessels
• Most commonly = pressure in arteries supplied by aorta
• Decreases as distance from L. ventricle increases
 – high to low pressure
Pulse

- Pulse
 - The alternating expansion and recoil of arterial wall
 - Each beat of the left ventricle
 - Felt in arteries close to surface
Measuring Blood Pressure

• Systolic / Diastolic
 – Ex: 120 / 70

• Systolic pressure
 – Ventricles contract
 – Higher
 – 1st #

• Diastolic pressure
 – Ventricles relax
 – Lower
 – 2nd #
Pulse Pressure

- Dif bw systolic and diastolic pressures
- Lessens as distance from heart increases
Blood Pressure

• **Normal:**
 – Systolic 110-140
 – Diastolic 75-80
 – Varies with age, weight, race, mood, physical activity, and posture
Blood Pressure

• **Low** = **Hypotension**
 – Systolic below 100
 – expected result of physical conditioning
 – longer life
Blood Pressure

• High = **Hypertension**
 – Sustained elevated arterial pressure of 140/90 or higher
 – Common
 – dangerous
 – Larger, weaker heart
 • Works harder
 – “silent killer”
5 Factors Affecting Blood Flow

• 1) **Pressure**
• Directly related
 – Increase pressure, increase flow
 – Greater the difference in pressure, faster flow
5 Factors Affecting Blood Flow

2) **Resistance**
 - Opposes movement
 - Inversely related
 * Increase resistance, decrease flow
 - **Peripheral resistance** = resistance in arterial system
 * *arteriole diameter important!*
 * Depends on
 - Vascular resistance
 - Viscosity
 - Turbulence
5 Factors Affecting Blood Flow

- 3) Vascular Resistance
- Largest component of peripheral resistance
- Resistance of vessels to flow
 - Depends on length and diameter
 - Higher friction when longer and/or narrower
5 Factors Affecting Blood Flow

- 4) **Viscosity**
 - Resistance of flow
 - Depends on molecules in blood
 - Higher = more pressure needed for flow
 - Blood 5x more viscous than water
5 Factors Affecting Blood Flow

• 5) Turbulence
 – Blood does not flow smoothly
 • Injury, disease, sudden change in vessel diameter
 • Interior of vessel not smooth
 – Slows flow, increases resistance

• Fastest flow in center of vessel, slowest near walls. . . WHY?
Arteriosclerosis

• Thickening and toughening of arterial walls
 • (Skleros = hard)
 • ~ 50% of deaths in U.S.
• If in arteries leading to brain, can cause stroke
Atherosclerosis

• Form of arteriosclerosis
• Formation of lipids in tunica media
• Caused by fat in blood, cholesterol
• Forms plaque – fatty mass
• Leads to CAD
• Risk factors:
 – Age
 – Male
 – High bp
 – Smoking
 – Diabetes
 – Obesity
 – Stress
Coronary Artery Disease

• CAD

• Arteriosclerosis of coronary vessels
 – Fatty deposits in vessels
 – Cardiovascular disease
Healthy Heart

• Aerobic exercise
 – Rate higher than normal for extended time
 • Removes fatty deposits
 • Pulse rate decreases
 • Blood pressure decreases
 – Can cut heart attack risk in half
Review: Pulmonary Circulation

- Deoxygenated into R. atrium via the inferior and super vena cava.
- Thru tricuspid valve to R. ventricle
- Thru pulmonary valve into pulmonary trunk into arteries to lungs
- Becomes oxygenated in lungs through capillaries and returns to heart via the pulmonary veins and dump into Left atrium
Review: Systemic Circulation

– Oxygenated blood in the L atrium passes thru bicuspid valve into L. ventricle.
– Goes through aortic valve and out through the aorta
– Distributes oxygen body and comes back to heart via inferior vena cava and superior vena cava

Coronary sinus also returns blood to R. atrium after
Major Arteries

R and L Coronary Arteries
- branches of aorta
 -- supply heart tissues with blood
 -- must be continuous

-Pulmonary Trunk (branches into pulmonary arteries)
 - Takes blood from the R ventricle
 -- deoxygenated blood to lungs

-Aorta
 - Takes blood from L ventricle
 - Oxygenated blood to body
Major Veins

Inferior and Superior Vena Cava
- brings blood to R atrium
- deoxygenated blood from body

Pulmonary Veins –
- return blood to L atrium
- oxygenated blood from lungs

Coronary Sinus –
Large vein that empties into R atrium
- deoxygenated blood
Heart Dissection
Heart Structure
Heart Dissection