Cardiovascular System

• Internal transport network
• Links all body parts
• Embryos need by end of 3 weeks
 – Only a few mm long
 – Use diffusion until then
• First system to fully develop
Blood Functions

- “River of life”
- 1) Transports substances
 - Gases
 - Nutrients
 - Wastes
 - Hormones
- 2) Regulation of pH and ion composition
Blood Functions

- 3) Restricts fluid loss at injury sites
 - Blood clotting
- 4) Defense
 - Fights toxins and pathogens
- 5) Maintain body temp
Characteristics of Blood

• *Always* red
• 5x more viscous than water
 – Sticky
• Slightly alkaline
 – pH is 7.35 - 7.45
 • 7.4 = average
• Slightly warmer than body temp
 – 100.4°F (38°C)
• Metallic taste
Blood Collection

- **Venipuncture** – Using superficial vein to collect blood

- Why vein vs artery?
 - Easy to locate
 - Thinner walls
 - Lower bp
 - Puncture seals quickly
Blood Collection

- **Capillary blood** - used for a smear
 - Finger tip
 - Ear lobe (babies)
 - Big toe, heel
- **Arterial puncture** – used to evaluate gas exchange
Composition of Blood

• Connective tissue
 – The **ONLY** fluid tissue

• Living cells
 – Formed elements

• Nonliving fluid matrix
 – Plasma
Hematocrit (HCT)

- Percentage of whole blood sample that is occupied by cellular elements
- Measured after spinning in centrifuge
- Males ~ 46%
- Females ~42%
- Mostly RBCs
- Ratio of RBC to WBC – 1000:1
Centrifuging the Blood
Centrifuged Blood Sample

• **Plasma**
 – 46-63% (~55%)

• **Formed elements**
 – 37-54% (~45%)
 – Reddish
 – Mostly RBCs
Blood volume

• Men
 – 5.3-6.4 quarts (~1.5 gallons)
 – (5-6 liters)

• Women
 – 4.2-5.3 quarts (~.875 gallons)
 – (4-5 liters)

• Varies with:
 – Body size
 – Concentration of fluid and electrolytes
Plasma

- **Plasma**
 - Liquid part of blood
 - Called *serum* when proteins are removed
 - Straw colored
 - 92% water
 - Cells and platelets suspended
 - Dissolved in plasma
 - Nutrients
 - Ions
 - Gases
 - Hormones
 - Proteins
 - Wastes
Plasma

• **Plasma proteins**
 – Most abundant solute
 – Not usually used for energy
 – 3 main types:
 • 1) Albumins
 • 2) Globulins
 • 3) Fibrinogens
1) Albumins

- Smallest
- 60% of proteins
- Synthesized in liver
- Important determinant of osmotic pressure of plasma
 - Tends to hold water in capillaries
 - Help control blood pressure
2) Globulins

- 35% of proteins
- Include:
 - 1) **Antibodies** (Immunoglobulins)
 - Attack foreign proteins and pathogens
 - Made by plasma cells of lymphatic tissues
 - 2) **Transport Proteins**
 - Made in liver
 - Transports lipids, fat-soluble vitamins, and hormones
3) Fibrinogen

- 5%
- Blood coagulation (Clotting)
- Made in liver
- Largest of proteins
- Can interact and form fibrin (larger, insoluble)
Gases and Nutrients of Plasma

• Important gases:
 – Carbon dioxide
 – Oxygen

• Plasma nutrients:
 – Amino acids
 – Sugars
 – Nucleotides
 – Lipids
Plasma

• Transports glucose from small intestine to liver
 – Stored as glycogen OR converted to fat
 – Glycogen converted to glucose if blood glucose drops below normal

• Transports amino acids to liver
 - make proteins
 - used as energy
Plasma Lipids (p. 384)

• 3 Types:
 – Triglycerides (fats)
 – Phospholipids (fatty acids)
 – Cholesterol

• Lipids not soluble in water
 – Plasma = 92% water
 – Combine with proteins to make lipoproteins
Lipoproteins

• Less dense than pure proteins
• As % of lipids increases, density of lipoprotein decreases and vice versa
Types of Lipoproteins
(Chapter 17)

• Very low-density lipoproteins (VLDL)
 – high conc. of triglycerides
 – Bad

• Low-density lipoproteins (LDL)
 – high conc. of cholesterol
 – Major cholesterol carriers
 – Bad

• High-density lipoproteins (HDL)
 – high conc. of protein, low conc. of lipids
 – Good!

• Chylomicrons
 – triglycerides absorbed from small intestine
11.3 Erythrocytes (RBCs)

- **Erythros** = red
- Biconcave
 - Large surface area
 - Flex and squeeze thru capillaries
- Lack nucleus, mitochondria, and ribosomes when mature
 - Cannot make proteins
 - Cannot divide
 - Cannot “steal” Oxygen for cell. respiration
Erythrocytes

• ~ 260 million in 1 drop of blood
• Most numerous cells in body
 – ~ 25 trillion!
• Circulate ~120 days
• Recycled in liver, spleen, and bone marrow by macrophages
• Continually replaced
 – ~1% replaced each day
 – ~ 3 million new RBCs made each second!
Erythrocytes

- Contain hemoglobin (Hb)
 - Contains Iron
 - Transports O$_2$
Carrying Oxygen

• **Oxyhemoglobin**
 – oxygen attached to Hb combined
 – **bright red**

• **Deoxyhemoglobin**
 - No oxygen attached to Hb
 - **Dark red/burgundy**
Just because it’s interesting . . .

• ~250 million Hb molecules per RBC
 – Each Hb can bind 4 oxygen molecules
 • Each RBC can carry ~ 1 billion oxygen molecules
 – One drop of blood contains ~ 260,000,000,000,000,000,000 molecules of O₂

• Now that’s a lot of oxygen!
RBC Count

- Cells per cubic mm (microliter = µL)
 - Males ~ 5.4 million
 - Females ~ 4.8 million
Anemia

• Reduced oxygen-carrying ability
 – Lower numbers of RBCs (low HCT)
 – Less Hb

• Symptoms
 – Weakness
 – Muscle fatigue
 – Lack of energy
Hemoglobinuria

• Large numbers of RBCs break down
• Urine turns reddish or brown
 – Could be caused by a kidney infection
RBC Destruction

• After about 120 days:
• Macrophages in spleen, liver, red bone marrow
 – Break down RBCs
 – Hb freed and broken down into:
 • 1) **Heme** = iron-containing portion
 – Broken down into iron and **biliverden** (greenish pigment)
 – Iron is stored and/or reused
 – Biliverden converted to **bilirubin** (orange pigment)
 » Both pigments excreted in bile
 » Causes yellow color of urine and brown color of feces
 • 2) **Globin** = protein
Jaundice

• Caused by blocked bile ducts
 – Bilirubin diffuses into peripheral tissues
 • Causes skin and sclera to appear yellow
RBC Breakdown

• **Hemolyze** – to rupture
 – 10% of RBCs in blood stream rupture
 • All others engulfed by macrophages and recycled

• **Hemolysis** – breakdown of RBCs
Formation of Blood Cells

- **Hemocytoblast**
 - Stem cell
 - Found in red bone marrow
 - Each type of blood cell develops differently
Hematopoiesis

- Also called Hemopoiesis
- Formation of Blood Cells
- Erythropoiesis - formation of RBCs

- Adults:
 - Occurs in red bone marrow (myeloid tissue)
 - Vertebrae, sternum, ribs, scapulae, pelvis, proximal limb bones
 - Rarely occurs in yellow bone marrow
 - Ex: sustained blood loss

- Fetus:
 - Occurs in: yolk sac, liver, spleen, thymus, bone marrow
Blood Cell Formation
RBC Regulation

- Controlled by **Erythropoietin** (EPO)
 - (Erythropoiesis-stimulating hormone)
 - Liver makes some
 - Kidneys play major role in production
 - Targets bone marrow
 - Can increase RBC formation 10x (~30 million per second)
 - Diagram p. 390
RBC Regulation

• Controlled by blood oxygen levels
 – If low, turns on production
 • = Negative feedback system
 • Ex:
 – Anemia
 – Blood flow declines to kidneys
 – Oxygen in air declines
 » Disease, altitude
 – Lung damage
11.4 Blood Transfusions

- Replace substantial blood loss
- Collect blood from donor
 - Mixed with anticoagulant
 - Refrigerated
 - Can be stored 35 days
- Given to recipient
- Must be matched by type
Blood Antigens

- (agglutinogens)
- Genetically determined protein
- Surface of RBCs
- Can NOT cross placenta
 - Too big
 - Mom and fetus can be different blood types
Blood Antibodies

• (agglutinins)
 – Carried in plasma
 – Proteins
 – Recognize foreign antigens
 – Tolerate only our own
Agglutination

- Clumping of RBCs
 - Mix different RBC antigens
 - Antibodies attach to the RBCs
 - RBCs burst
 - Clogs small vessels
 - Anxiety
 - Breathing difficulty
 - Facial flushing
 - Pain
 - Kidney failure
Human Blood Types

• Four blood types (phenotypes): A, B, AB, and O
• Blood type is controlled by three alleles
• O is recessive
• A and B are codominant
Who gives to who?

• IF antigen of one type reacts with antibody of same type
 – Causes clumping

• **Universal Recipient = Type AB**
 – Has Antigens A and B
 – No antibodies
 – Can **give to ONLY AB** blood type
 – Can **receive ANY** blood type
Who gives to who?

• **Universal Donor =**

 Type O

 – No antigen A or B

 – Has Antibodies A and B

 – Can **give to ANY** blood type

 – Can **ONLY receive** type O
Blood Types p. 392
Rh Factor

• Named after Rhesus monkey
• Several factors (antigens)
 – Most common = antigen D
• Inherited trait
• Different from Blood type antigens
 – Smaller
 • Can cross from mother to fetus through placenta
• Do NOT appear spontaneously
 – Have to be stimulated
Rh Factor

- If any antigen present on RBC = **Rh-Positive**
- No Rh antigens = **Rh-Negative**
 - Only 15% of people in U.S.
Rh Factor Stimulation

• Example 1: Rh-negative person receives Rh-positive blood, then antibodies are produced. No reaction first time. If Rh-negative person is given Rh-positive blood again months later, reaction will occur.
Rh Factor Stimulation

• **Example 2:** If Rh-negative mother is pregnant with Rh-positive fetus for first time, no problem. However, cells from Rh-positive fetus #1 entered mom’s bloodstream causing antibodies to form that fight Rh-positive blood cells. Now, if another Rh-positive fetus begins to form, mother’s antibodies will attack fetal RBCs.
Human Blood Types
11.5 Leukocytes (WBCs)

- Fewer
- Larger
- Have nucleus and other organelles
- Protect against disease
- <1% of blood
- Can move in and out of blood vessels (*diapedesis*)
 - Squeeze through epithelial cells in capillaries
- 5 types normally in blood
Leukocytes

• Destroy invaders
• Move to areas of damage and infection
 – Use *ameboid motion* once outside of blood (interstitial spaces)
• Produce proteins (antibodies) that destroy invaders
WBC Count (WBCC)

- 6,000 – 9,000 per mm3
- Increase = likely infection
- **Leukocytosis**
 - Higher than normal WBCC
 - acute infection >10,000 per mm3
 - Ex: appendicitis, leukemia
- **Leukopenia** = <5,000 per mm3
 - “penia” = poverty
 - Lower than normal WBCC
 - Ex: Flu, AIDS, Polio
WBCC

- **Leukemia** - “White blood”
 - Cancer
 - Some can be treated
 - If not treated, 100% fatal
 - May be caused by:
 - Extreme leukocytosis
 - >100,000 per mm3
 - Large # of abnormal or immature WBCs
Classification of Leukocytes

• 5 main types (See chart p. 397)
• Two major groups based on presence of granules
 • A) Granulocytes
 • B) Agranulocytes
A) Granulocytes

- About 2x size of RBC
- Contain granules
 - Abundant secretory vesicles and lysosomes
- Lobed nuclei
- Develop in red bone marrow
- Short life span (~12 hours)
- 3 Types:
 - 1) Neutrophils
 - 2) Eosinophils
 - 3) Basophils
1) Neutrophils

- Stain light purple/pink
- Multi-lobed nucleus
 - Most = 2–5 lobes
 - Stain deep purple
- Most abundant
 - 54-62% of WBCs
- Phagocytizes small particles
- Fight acute infections
- Live about 10 hours
- **Pus** – mix of dead neutrophils, cellular debris, and other waste
2) Eosinophils

- Stain deep red
- Cytoplasm stains pink
- Bilobed nucleus
- Not abundant
 - 2-4% of WBCs
- Weakly phagocytic
- Increase:
 - Certain parasite infections
 - Allergic rx
3) Basophils

- Contain large **granules**
 - Stain deep blue or purple
 - Some contain **heparin**
 - Prevents blood clots
 - Some contain **histamine**
 - Increase blood flow to tissue
 - Helps with allergic response
- Bilobed nucleus
- Rarest
 - < 1% of WBC
B) Agranulocytes

- Granules very tiny
 - Don’t see easily
- More normal nuclei
- 2 Types:
 - 1) Monocytes
 - 2) Lymphocytes
1) Monocytes

- Largest WBC
 - 2x bigger than RBC
- Large nucleus
 - Often kidney-shaped or oval
 - 2-8% of WBC
- Circulate in blood stream for ~ 24 hrs
 - Then enter peripheral tissues and become macrophages
- Aggressive Phagocytes
 - “Clean up” team
 - Engulf large things
2) Lymphocytes

• Smallest
 – Slightly larger than RBC

• Large, round nucleus
 – Stains purple
 – Small rim of cytoplasm

• 20-30% of WBCs

• Found in lymphatic tissue

• Immune response
 – Produce antibodies

• Live for many years
11.6 Platelets

- No nucleus
- Cytoplasmic fragment
 - \(\frac{1}{2} \) size of RBC
- Arise from megakaryocytes – large cells in red bone marrow
 - (Megakaryocytes develop from hemocytoblasts)
- Circulate for 9-12 days
- Platelet count 150,000 to 500,000 per mm\(^3\)
 - Ave = 350,000
- Close breaks in blood vessels
 - Initiate blood clot formation
- **Thrombocytes** – platelets in nonmammals
 - Nucleated
About 400x
Abnormal Platelet Counts

• Thrombocytopenia – low count
 – <80,000 per mm3
 – Bleeding in digestive tract, within skin, in CNS

• Thrombocytosis – high count
 – >1,000,000 per mm3
 – Develops in response to cancer, infection, or inflammation
Formation of blood cells and platelets
11.7 Hemostasis

- Stoppage of blood flow
- Hem = “blood”
- Stasis = “standing still”
- Fast and localized
- Starts *clotting cascade*
 - Chain rx of events
- Three major phases:
 - 1) Vascular spasms
 - 2) Platelet plug formation
 - 3) Coagulation
Hemostasis

• Takes 3-6 minutes
• Rapidly inactivated after clot is made
 – Prevents widespread clotting
• Limited to blood that is standing still or moving slowly
Hemostasis

• 1) Vascular spasms
 – Last ~ 30 min
 – Platelets anchored
 • Release serotonin
 – Contracts smooth muscles in walls
 – Narrows blood vessel diameter
 – Decreases blood loss
 – Endothelial cells become sticky
 • Small capillaries may stick together
Hemostasis

• **2) Platelet phase**
 – Begins ~15 seconds after injury
 – Endothelium is normally smooth
 • Now broken = rough
 – **Platelet plug** formed
 • Platelets adhere to
 – Broken vessel
 – Each other
 – Collagen
 • Platelets pile up, form plug
Hemostasis

• 3) Coagulation events
 – Starts 30 seconds or more after injury
 – Injured tissues release **thromboplastin**
 • Activates **clotting cascade**
 – Prothrombin forms thrombin
 – Thrombin joins fibrinogen into fibrin
 – Fibrin traps RBCs
 • Forms clot
Undesirable Clotting

• **Causes:**
 – Physical blows
 – Fatty material build up
 – Slow flowing blood
 – Blood pooling
 • Immobilized patients
 • Anticoagulant use
 – * Roughed up endothelium causes platelets to cling
Thrombus

- Undesirable clotting
- Does not move
- In unbroken vessels
- May prevent blood flow
- Kills tissues supplied by vessel (infarction)
- May be fatal
- Coronary thrombus = Heart attack
Embolus

- **Undesirable clotting**
- Thrombus *floating freely* in vessels
- May get lodged in smaller vessel:
 - If lodged in artery
 - Can lead to cerebral embolus = stroke
 - If lodged in veins
 - Can get lodged in lungs = pulmonary embolism
Thrombus and Embolus
Bleeding Disorders

- **Liver:**
 - Synthesizes clotting factors
 - If liver cannot make clotting factors = abnormal and severe bleeding episodes
 - Vitamin K deficiency
 - Needed by liver to make factors
 - Easily corrected
 - Liver malfunction
 - Hepatitis or cirrhosis
 - Need transfusion
Bleeding Disorders

- **Hemophilia**
 - Hereditary
 - Clotting factors inadequate
 - “Bleeders disease”
 - Prolonged bleeding
 - Life threatening
 - Bleeding in joints
 - Disabled
 - Painful
 - Treatment
 - Transfusions
 - Injections of factors